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Abstract
Ray theory is used to solve a sequence of elastic wave scattering problems,
either within an isolated solid or else within two elastic solids in contact
along a planar interface, with time-harmonic forcing of a Gaussian type. By
appealing to the ideas behind Gaussian beam summation, we then integrate the
resulting Gaussian beam solutions to produce explicit, closed-form expressions
for the cylindrical fields that radiate into the elastic media as a result of Lamb-
type localized boundary forcing. This approach furnishes something usually
impossible from ray analyses of diffraction problems—namely the associated
far-field diffraction coefficients or ‘directivities’—and does so without the
need to resort to delicate steepest descents and branch cut manipulations of
cumbersome and complex-valued integral transform solutions. Reference is
also made to applications to some problems involving non-localized interfacial
forcing.

PACS numbers: 46.40.−f, 46.40.Cd, 42.15.−i, 42.15.Dp

1. Introduction

One of the most significant developments in the analysis of the scattering and diffraction of
single-frequency acoustic, electromagnetic or elastic waves—governed by scalar (acoustic) or
vectorial (electromagnetic and elastic) Helmholtz equations—in the short-wavelength limit is
the celebrated geometrical theory of diffraction. Accounts and applications of this method,
which has its foundations within ray theory, can be found in the papers by Keller [1], Keller
and Lewis [2], Karal and Keller [3] and in the books by C̆erveneỳ [4] and Babic̆ and Buldyrev
[5] (and it should be noted that the latter contains an excellent review of the relevant Russian
literature).

The principal strengths of the method lie in its applicability to a wide range of geometries
in two or three dimensions, wave types (e.g., bulk and surface waves) and media (acoustic,
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electromagnetic or elastic, homogeneous or otherwise), and also in its highly intuitive,
geometrical foundations. However, it does have deficiencies and will fail near regions of
non-uniformity such as at caustics or shadow boundaries, for example. Also, although it will
predict accurately the form of the phase and amplitude structure of the various wavefields
present in the solution of a given scattering problem, it will not furnish explicit expressions
for them in that there is generally a multiplicative diffraction coefficient within the amplitude,
often a function of position or polar angles, which this ray analysis cannot fix. In order to do
so, recourse must usually be made to the exact solution of an appropriate canonical diffraction
problem, and a comparison made between the appropriate asymptotic limit of this solution
and the aforementioned ray solution.

The former class of deficiencies can be treated using boundary or interior layer techniques
and matched asymptotic expansions (see, for example, the papers by Buchal and Keller [6],
Zauderer [7] and Ludwig [8]), although relatively recent developments in Gaussian beam
summation have led to alternative ways of circumventing this problem. The idea is to construct
the standard ray solution, and then to pose and solve an appropriate parabolic wave equation
along each ray trajectory yielding a Gaussian beam profile enveloped around each of the
original rays. The superposition of all of these beams—one for each constituent ray—then
provides an accurate asymptotic solution to the original problem. One of the powers of the
method is that it remains uniformly valid near regions where the ray solution alone would not
have been, and so the separate boundary layer analyses just referred to are unnecessary. We
refer to the pioneering work of Popov [9], C̆erveneỳ et al [10] and Katchalov and Popov [11],
and the references cited therein, for accounts and examples of the method.

Another example worthy of mention is the novel analysis by Babich et al [12] of the
complete high-frequency wave structure generated by a point source located close to the
interface between two wave-bearing media. It had previously been noted by others (see
the relevant citations listed in [12]) that in this configuration, a wavefield confined to a so-
called supercritical region of one of the media is excited, and that this field apparently did
not have a natural interpretation in terms of rays. However, Babich et al were indeed able to
obtain a description of all of the fields that were generated, including the aforementioned ‘non-
geometrical’ one, using traditional ray methods (and an application of a certain reciprocity
principle). This analysis has relevance here because not only did construct a full description
of a wavefield previously believed to be unobtainable by ray methods alone, but also they did
so by allowing for the possibility that some of the eikonal functions that arise were complex-
valued; both of these general features are also present in the calculations that we present here
and we shall make further comparisons between the two approaches towards the end of this
paper.

The principles behind Gaussian beam summation will play a key role in the problems
that we shall consider here, which involves the determination of a certain class of diffraction
coefficients in elastic wave scattering using ray-type methods alone—something which was
not previously possible. To set this into context, we begin discussing the approach taken
by Barbone [13] when constructing the two-dimensional acoustic fields that radiate from an
impedance surface under localized line-forcing.

The specific problem considered by Barbone was to find the outgoing pressure field p
satisfying the two-dimensional Helmholtz equation and impedance condition,

∂2p

∂x2
+

∂2p

∂y2
+ k2p = 0, y > 0, (1)

∂p

∂y
+ αp = δ(x), y = 0, (2)
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respectively. Note that a time-harmonic factor e−iωt is assumed and suppressed, as we shall do
throughout this paper, and that we have changed Barbone’s original notation using y instead
of z and α instead of β; this is to avoid notational clashes later in this paper. Of course,
there will be a far-field cylindrically-spreading pressure field pc which, in terms of plane polar
coordinates (r, θ), is easily predicted to be of the form

pc(r, θ) ∼ D(θ)
eikr

(kr)1/2
, (3)

as well as a surface wave (which can be thought of as an eigensolution to (1) and the
homogeneous version of (2)). The ‘directivity’ D(θ) of the former field and the excitation
coefficient of the latter are precisely the diffraction coefficients (in this case) that cannot
usually be extracted from a ray analysis alone.

Despite the existence of an exact integral transform solution of this problem, from which
D(θ) can be extracted from a standard saddle-point estimate and the surface wave launching
coefficient from a residue contribution, Barbone’s strategy was to calculate approximate
closed-form expressions for these quantities using matched asymptotic expansions and to do
so in a fashion that does not rely in any way upon the existence of an exact solution (a luxury
not always available in more general problems). The particular limit that was studied was
α/k → 0, although other important limits could have been studied too.

An alternative approach to calculating explicit expressions for the far-field directivities
(we shall return to the issue of surface wave coefficients at the end of the paper) of such forced
scalar wave problems was proposed by the current author [14]. Essentially, the idea is to
replace the boundary-value problem (e.g., (1) and (2)) by another in which the δ(x)-forcing in
the boundary condition is replaced by a forcing with the Gaussian profile. This ‘augmented’
problem is then solved using complex rays (i.e., traditional rays in which the eikonal function
is allowed to be complex-valued—see the articles by Thomson [15], Kravtsov et al [16]
and Chapman et al [17] for descriptions and applications of this technique) to generate
a Gaussian beam solution very much in the spirit of that derived by Keller and Streifer
[18]. We then consider a continuous superposition (via one straightforward integration) of
these beams—each of which has physical relevance in its own right—and after doing so
we are able to obtain a closed-form expression for the directivity without the need to take
recourse to any exact solutions that might exist, thus avoiding having to perform delicate
manipulations of cumbersome, complex-valued integrals. It is in this context that we compare
the current methodology to that of the Gaussian beam summation. Although the method
we use to construct our beams is different to that used by C̆erveneỳ et al [10], our overall
strategy is to generate the wavefield that we are seeking by integrating over these beams; this
general idea underpins the principles behind Gaussian beam summation (see equation (55)
in [10]).

In [14], a sequence of scalar wave scattering problems—including one involving the
coupled acoustics of two adjacent media and another concerning an extension to Barbone’s
problem to incorporate non-localized forcing—were studied and illustrated the robustness of
the method. Our purpose here is to consider a significant extension of this methodology in
terms of its application to problems in elastic wave scattering. The added complications here
are that the field equations and boundary conditions, apart from being much more complicated
in structure, permit the propagation of two distinct types of waves. Hence, the Gaussian beam
summation procedure must be modified in order to account for the two separate types of beam
generated by the boundary data in the appropriate augmented problem. We shall also see that
there are other subtleties brought about by this aspect of the problem, and we shall highlight
these as we meet them.
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2. Far-field directivities from localized forcing

We begin by considering the case of a vacuum-backed, isotropic elastic solid undergoing
localized forcing in the normal component of its boundary traction—Lamb’s problem. The
solid, which occupies the half-plane y < 0, is in a state of plane strain and its elastic
displacement u(x, y) can be expressed in terms of two potential functions ψ(x, y) and χ(x, y)

in the form

u = ∇ψ + ∇ × (χk), (4)

where k is a unit vector in the z-direction. The first term on the right-hand side represents the
longitudinal (or ‘P’-type) elastic displacement whilst the second yields the shear (or ‘S’-type)
component; in this configuration, the latter will be in a state of vertical polarization. The
boundary value problem that we pose is to solve(∇2 + k2

P

)
ψ = 0, y < 0, (5)(∇2 + k2

S

)
χ = 0, y < 0, (6)

2
∂2ψ

∂x∂y
+

∂2χ

∂y2
− ∂2χ

∂x2
= 0, y = 0, (7)

2µ

(
∂2ψ

∂y2
− ∂2χ

∂x∂y

)
+ λ∇2ψ = F0δ(x), y = 0, (8)

with ψ and χ both outgoing as (x2 +y2)
1
2 → ∞ in y < 0. Here, kP and kS are the longitudinal

and shear wavenumbers, respectively, λ and µ are the usual Lamé constants, and F0 is an O(1)

constant.
Equations (7) and (8) are the boundary conditions to be satisfied at the free surface of the

solid. The former guarantees that the shear component of the stress τxy at the surface vanishes,
so that

τxy = µ

(
∂ux

∂y
+

∂uy

∂x

)
= 0 on y = 0,

where u = (ux, uy), whilst the latter is a model for the normal component of surface stress τyy

being zero everywhere except at the origin, where we apply a delta-function forcing, leading
to

τyy = (λ + 2µ)

(
∂ux

∂y
+

∂uy

∂x

)
− 2µ

∂ux

∂x
= F0δ(x).

Using (4) to calculate ux and uy in terms of the potential functions ψ and χ then produces
(7) and (8); full details can be found in the book by Graff [19], especially in section 6.1.1 We
shall be concerned with the high-frequency solution in the limits kP , kS → ∞ and for which
kP /kS = O(1).

In this example, we obtain the ‘augmented’ problem referred to in the introduction by
replacing (8) by

2µ

(
∂2ψ

∂y2
− ∂2χ

∂x∂y

)
+ λ∇2ψ = k2

P F0

2π
exp

(
ikP βx − kP x2

2ε

)
. (9)

Some comments regarding this are in order. First, the wavenumber kP arises on the right-hand
side of this revised boundary condition. We could just as easily have used kS and, whilst some
of the intermediate stages of the calculation that follows would then be different, the final
result is the same in the either case. Second, we have introduced two new parameters into the
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problem, namely β and ε. Though full details are presented in [14], it turns out to be important
that whilst we take ε to be a small lengthscale, we still need to insist upon the limits kP ε → ∞
and kSε → ∞ as kP , kS both become large; this is to remain consistent with the ray limit
that we are taking. Despite this, we can still use the smallness of ε as a basis for asymptotics
elsewhere in the calculation. Given the form of this modified boundary condition (which is of
a Gaussian profile), it is not unreasonable to expect it to generate beam-type elastic wavefields
in the solid; we shall see that this is indeed the case and that the parameter β relates to their
direction of propagation.

To construct the leading-order solution to the augmented problem, we assume a ray ansatz
for each of ψ and χ in the form

ψ ∼ AP eikP UP , χ ∼ AS eikSUS (10)

in which the phases Uα and the leading-order amplitudes Aα (α = P, S) are functions of
position. Substitution into (5) and (6), respectively, and extracting terms of O

(
k2
α

)
and then

O(kα), yields that they satisfy the eikonal equation

∇Uα · ∇Uα = 1 (11)

and the transport equation

2∇Aα · ∇Uα + Aα∇2Uα = 0, (12)

respectively, again for α = P, S. We note here that in the standard notation of the theory of
partial differential equations, (11) and (12) (together with appropriate boundary data, which
we shall discuss shortly) represent the Cauchy problems for the eikonal functions Uα and,
subsequently, the amplitude Aα . Although we continue to present our analysis in the spirit
of traditional ray theory, we could nonetheless consider these problems in this more general
setting using the methods behind solving Cauchy problems (see Sneddon [20] for details).

By equating exponents in the two ray ansätze in (10) and on the right-hand side of (9),
we see that the boundary data that accompanies (11) is

UP = βs +
is2

2ε
(13)

US = cS

cP

(
βs +

is2

2ε

)
, (14)

in which cS, cP are the shear and longitudinal wavespeeds, respectively, and we have
parametrized the boundary in terms of arclength s such that x = s, y = 0. The characteristics
of (11), which can be obtained by a routine application of Charpit’s method (see Sneddon [20]
for a general description of the method, or Tew [14] for an account relevant to this particular
problem), are the rays of geometrical optics. In addition, we also require that the accumulation
of all such ray contributions yields an outgoing, or else an exponentially decaying (rather than
growing) solution. We refer to [14], [15] and [16] for details.

That we have two complex ray fields, driven by (13) and (14), is our first departure from
the scalar problems considered in [14], and considering the ‘P’-type field first, we find that
the equations of the rays are

x = s + τ
(
β +

is

ε

)
, y = −τ

[
1 −

(
β +

is

ε

)2
]1/2

, (15)

where the frst ‘−’ sign in the y-equation guarantees propagation into y < 0. By eliminating
τ between these equations, and introducing a modified polar angle  = −θ(π >  > 0), we
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find that the smallness of ε leads to an approximation of the launch point s of the ray passing
through the point in the solid with polar coordinates (r,) in the form

s ∼ iε (β − cos )
(

1 +
iε

r
sin2 

)
. (16)

Further, we can show that the distance τ that the ray must travel in order to make this
intersection is

τ ∼ r − iε cos (β − cos ) (17)

and that the phase of the contributory ray is then

Up ∼ r + 1
2 iε (β − cos )2 . (18)

(Note that UP = τ + βs + is2/2ε, which is a consequence of Charpit’s equations). The
analogues of (15)–(18) for the ‘S’-type rays are, respectively,

x = s + cτ
(
β +

is

ε

)
, y = −τ

[
1 − c2

(
β +

is

ε

)2
]1/2

, (19)

s ∼ iε

(
β − 1

c
cos 

) (
1 +

iε

r
sin2 

)
, (20)

τ ∼ r − iε cos 

(
β − 1

c
cos 

)
(21)

and

Us ∼ r + 1
2 iε

(
β − 1

c
cos 

)2

, (22)

in which c = cS/cP .
We must now consider the amplitudes AP ,AS and we begin by remarking that along the

rays, the transport equations (12) reduce to the ordinary differential equations

2
dAα

dτ
+ Aα∇2Uα = 0, α = P, S. (23)

Following some algebra (to compute ∇2Uα), we find that in this case the solution is

Aα(s, τ ) = Aα(s, 0)

[
qα

τ(p′
αqα − pαq ′

α)

]1/2

, α = P, S. (24)

Here, pα and qα are the values of ∂Uα/∂x and ∂Uα/∂y, respectively (which can be found
by differentiation of (13), (14) with respect to s (to find pα) and then using the eikonal
equation (11) (to find qα)), evaluated on the boundary, and a prime denotes differentiation
with respect to s. In terms of the approximations for s and τ that we have already deduced,
we may now use these in (24) to get the results

AP (s, τ ) ∼ AP (s, 0) sin  e−iπ/4
(ε

r

)1/2
, (25)

AS(s, τ ) ∼ AS(s, 0) sin  e−iπ/4
( ε

cr

)1/2
. (26)

Hence, we now just need to calculate the boundary amplitudes Aα(s, 0), α = P, S, and we
do this by substituting the two ansatz’s (10) into the boundary conditions (7) and (9) and then
take the leading-order terms (in kP , kS). The upshot is
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AP (s, 0) = F0

2πρc2
P

(
1 − 2q2

s

)
[
4c2qSqP pSpP − (

1 − 2c2p2
P

)(
1 − 2q2

S

)] , (27)

AS(s, 0) = F0

2πρc2
P

2c2pP qP[
4c2qSqP pSpP − (

1 − 2c2p2
P

)(
1 − 2q2

S

)] , (28)

where ρ is the density of the solid (related to the Lamé constants by c2
P = (λ + 2µ)/ρ,

c2
S = µ/ρ).

At this point it is important to identify another subtlety that does not arise in the scalar
cases mentioned previously. For a given observation point within the solid, there is precisely
one contributory ‘P’- and ‘S’-type ray passing through it. However, we see from (16) and (20)
that the boundary launch points of these rays are different. Hence, the values of s that are to
be inserted into (27) and (28) are also correspondingly different and (using (16) and (20)) we
find that in (27) we must take

pP ∼ cos , qP ∼ −sin , pS ∼ c cos , qS ∼ −(1 − c2 cos2 )1/2, (29)

and, for (28),

pP ∼ 1

c
cos , qP ∼ −

(
1 − 1

c2
cos2 

)1/2

, pS ∼ cos , qS ∼ −sin . (30)

We have now calculated expressions for the leading-order amplitude and the phase of the
augmented problem, and piecing all of the results together we find that

ψ ∼ (2c2 cos2  − 1) sin 

[(1 − 2c2 cos2 )2 + 4c3 cos2  sin (1 − c2 cos2 )1/2]

e−iπ/4F0

2πρc2
P

(ε

r

)1/2

× exp

[
ikP r − kP ε

2
(β − cos )2

]
, (31)

χ ∼ −2c cos 
(
1 − 1

c2 cos2 
)1/2

sin [
(2 cos2  − 1)2 + 4c cos2  sin 

(
1 − 1

c2 cos2 
)1/2 ] e−iπ/4F0

2πρc2
P

( ε

cr

)1/2

× exp

[
ikSr − kSεc

2

(
β − 1

c
cos 

)2
]
. (32)

We, therefore, see that we have indeed generated a pair of beams with the Gaussian profile
which essentially emanate from the origin and are exponentially localized (recalling that
kαε � 1, α = P, S) around the polar angles cos−1 β (for ψ , the ‘P’-type field) and cos−1(βc)

(for χ , the ‘S’-type field). Of course, these are exponentially small everywhere in the solid if
β > 1 or βc > 1, respectively.

Our final step is to appeal to the principle of Gaussian beam summation, which in this
context is interpreted to be a continuous superposition (i.e., an integration) of the solutions
(31) and (32) over all real values of β. First, note that the field equations (5) and (6) and
the first boundary condition (7) remain unaltered, since we can simply take the integration
through the partial derivatives because of the linearity of the problem. However, integrating
(9) with respect to β yields kP F0δ(x) on the right-hand side and we, therefore, deduce that this
superposition of our complex ray beam solution provides that for the orignal problem (5)–(8)
posed, multiplied by a factor kP . Hence, to get the leading-order far-field for this problem
with δ(x)-forcing, all we need to do is integrate (31) and (32) with respect to β and then divide
by kP —a straightforward procedure which leads to the expressions
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ψ ∼ (2c2 cos2  − 1) sin 

[(1 − 2c2 cos2 )2 + 4c3 cos2  sin (1 − c2 cos2 )1/2]

e−iπ/4F0√
(2π)ρc2

P kP

eikP r

√
(kP r)

(33)

χ ∼ −2 cos 
(
1 − 1

c2 cos2 
)

sin [
(2 cos2  − 1)2 + 4c cos2  sin 

(
1 − 1

c2 cos2 
)1/2 ] e−iπ/4F0√

(2π)ρc2
P kp

eikSr

√
(kSr)

.

(34)
(We continue to use the same labels for the field variables in both the augmented and ray
problems since no confusion is likely).

Inspection of (33) and (34) shows that we have generated two cylindrically-spreading
elastic wavefields of the form (3), together with explicit expressions for the associated
directivities; as we stated at the outset, this was achieved by one ray calculation and a trivial
integration and at no point did we have to consider integrals arising from an integral transform
analysis.

We can go on to use this methodology to consider problems with a similar forcing at the
common interface between two elastic solids. Consider, for example, the augmented problem(∇2 + k2

P

)
ψ− = 0,

(∇2 + k2
S

)
χ− = 0, y < 0, (35)(∇2 + K2

P

)
ψ+ = 0,

(∇2 + K2
S

)
χ+ = 0, y > 0, (36)[[

2µ

(
∂2ψ

∂y2
− ∂2χ

∂x∂y

)
+ λ∇2ψ

]]
= F0k

2
P

2π
exp

(
iβkP x − kP x2

2ε

)
, y = 0, (37)

[[
2

∂2ψ

∂x∂y
+

∂2χ

∂y2
− ∂2χ

∂x2

]]
= 0, y = 0, (38)

[[
∂ψ

∂y
− ∂χ

∂x

]]
= 0, y = 0, (39)

[[
∂ψ

∂x
+

∂χ

∂y

]]
= 0, y = 0. (40)

Here, (36) represents the equations of motion (with KP and KS being the longitudinal and
shear wavenumbers) in the ‘upper’ solid (the notation in y < 0, where the equations of motion
are given in (35), being unchanged), and [[f ]] denotes the discontinuity in the quantity f in
passing from the ‘lower’ solid to the ‘upper’ solid, e.g.[[

∂ψ

∂x
+

∂χ

∂y

]]
=

(
∂ψ−

∂x
+

∂χ−

∂y

)
−

(
∂ψ+

∂x
+

∂χ+

∂y

)
.

The boundary conditions (37)–(40) require interpretation. We now have two elastic solids
in contact along a common interface y = 0, being subject to a surface stress distribution
of Gaussian profile in the direction normal to this interface. We, therefore, require that the
normal component of stress be discontinuous by an amount prescribed by this forcing (i.e. in
the notation of section 2,

[[τyy]] = F0k
2
P

2π
exp

(
iβkP x − kP x2

2ε

)
on y = 0), but that the shear component of stress must be continuous (i.e., [[τxy]] = 0), and
these conditions explain (37) and (38). We also require continuity of the tangential (ux) and
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normal (uy) components of the elastic displacement and, in terms of ψ and χ , these conditions
lead directly to (39) and (40), respectively.

We now pose the ray approximations

ψ− ∼ A−
P eikP U−

p , χ− ∼ A−
S eikSU−

S , y < 0, (41)

ψ+ ∼ A+
P eiKP U+

p , χ+ ∼ A+
S eiKSU+

S , y > 0, (42)

and expect four ray fields to be generated—a ‘P’- and an ‘S’-type in each of the two
solids. Although this problem is much more complicated than the previous one, most of
the mathematical machinery required to solve it is already in place (further illustrating the
convenience of this approach).

Indeed, the phase calculations are essentially already done since they only depend upon
the exponent in the right-hand side of (37), which was deliberately chosen to be the same as
that considered in the previous problem. Given this, equations (15)–(22) inclusive carry over
directly as far as the calculation of ψ− and χ− are concerned, and analogous expressions for
s, τ, U+

P and U+
S for the fields ψ+ and χ+ can be deduced form (20)–(22) simply by replacing

 by θ (the standard polar angle) and c by CP /cP (for ψ+) or CS/cP (for χ+). The amplitudes
A+

P and A+
S also follow from (25) and (26) with the same changes. With all of this information

we can now write the leading-order solution to this augmented problem as follows:

ψ+ ∼ A+
P

(
iε

(
β − cP

CP

cos θ

)
, 0

)
e−iπ/4 sin θ

(
ε

r

cP

CP

)1/2

× exp

(
iKP r − 1

2
KP ε

CP

cP

(
β − cP

CP

cos θ

)2
)

, (43)

χ+ ∼ A+
S

(
iε

(
β − cP

CS

cos θ

)
, 0

)
e−iπ/4 sin θ

(
ε

r

cP

CS

)1/2

× exp

(
iKSr − 1

2
KSε

CS

cP

(
β − cP

CS

cos θ

)2
)

, (44)

ψ− ∼ A−
P (iε (β − cos ) , 0) e−iπ/4 sin 

(ε

r

)1/2
exp

(
ikP r − 1

2
kP ε (β − cos )2

)
,

(45)

χ− ∼ A−
S

(
iε

(
β − cP

cS

cos 

)
, 0

)
e−iπ/4 sin 

(
ε

r

cP

cS

)1/2

× exp

(
ikSr − 1

2
kSε

cS

cP

(
β − cP

cS

cos 

)2
)

. (46)

These results depend upon the boundary values of the amplitudes A+
P (s, 0), A+

S(s, 0), A−
P (s, 0)

and A−
S (s, 0) and, as before, these are obtained by considering the leading-order balance when

(41), (42) are substituted into (37)–(40). The system of equations that arise are

−
[

1 − 2c2
S

c2
P

(
∂U−

P

∂x

)2
]

A−
P + 2

∂U−
S

∂x

∂U−
S

∂y
A−

S +

[
1 − 2

C2
S

C2
P

(
∂U+

P

∂x

)2
]

γA+
P

− 2γ
∂U+

S

∂x

∂U+
S

∂y
A+

S = F0

2πρc2
P

(47)
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−2
c2
S

c2
P

∂U−
P

∂x

∂U−
P

∂y
A−

P +

[
1 − 2

(
∂U−

S

∂y

)2
]

A−
S + 2

c2
S

C2
P

∂U+
P

∂x

∂U+
S

∂y
A+

P

−
[

1 − 2

(
∂U+

S

∂y

)2
]

c2
S

C2
S

A+
S = 0 (48)

cS

cP

∂U−
P

∂y
A−

P − ∂U−
S

∂x
A−

S − cS

CP

∂U+
P

∂y
A+

P +
cS

CS

∂U+
S

∂y
A+

S = 0 (49)

cS

cP

∂U−
P

∂x
A−

P +
∂U−

S

∂y
A−

S − cS

CP

∂U+
P

∂x
A+

P − cS

CS

∂U+
S

∂y
A+

S = 0. (50)

Here, γ is the ratio of the densities �/ρ (� being the density in y > 0 and ρ remains that in
y < 0) and the quantities ∂U±

α

/
∂x, ∂U±

α

/
∂y, can readily be obtained by differentiation of

the boundary data for the eikonal equations.
We do not present the solutions to this system of equations partly for economy of space

and partly because their precise form adds little to the general argument being developed,
suffice it to say that they can be solved explicitly and inserted into (43)–(46) to give explicit
expressions for the beam solutions radiating into both solids. Having done so, the analytical
forms of the far-field directivities for the problem in which the right-hand side of (37) is
replaced by a delta-function δ(x) follow by integration with respect to β and division by kP .
For example, that associated with the longitudinal field ψ+ in the ‘upper’ medium is given by

D+
P (θ) = A+

P

(
iε

(
β − cP

CP

cos 

)
, 0

)
sin  e−iπ/4 cP

kP CP

√
2π, (51)

with expressions for the other directivities following similarly.

3. Discussion and concluding remarks

We have presented a methodology for obtaining explicit expressions for the far-field
directivities of a certain class of fully coupled elastodynamic radiation problems; and have
done so using ray theory alone. The novelty lies in the technique itself and its wide-ranging
versatility. We chose to work in terms of potential functions (3), but could just as easily have
applied the method directly to Navier’s equations of linear elasticity; exactly the same results
arise. Of course, given this flexibility we could also apply the method to analogous problems
in electromagnetism. Indeed, we can also consider some problems with non-localized forcing.
Consider, for example, replacing the boundary condition (8) by

2µ

(
∂2ψ

∂y2
− ∂2χ

∂x∂y

)
+ λ∇2ψ = F0 eiαkP xH(x), (52)

where H(x) is the Heaviside function. This models the situation when half of the boundary is
being oscillated at a prescribed wavenumber. Then we have that(

∂

∂x
− iαkP

)(
2µ

(
∂2ψ

∂y2
− ∂2χ

∂x∂y

)
+ λ∇2ψ

)
= F0δ(x) (53)

and we can once more apply our methods (the result being that the directivities are essentially
those arising in (33) and (34) multiplied by a factor 1/(cos  − α)). Suppose next that a finite
portion of length 2a of the interface in which −a < x < a is subject to forced oscillations, such
as occurs when a continuous-wave transducer is applied to the boundary. Then an appropriate
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model is to replace the right-hand side of (52) by F0 eiαkP x (H(x + a) − H(x − a)), and an
appropriate superposition of the previously obtained solutions (each with displaced argument)
suffices.

Also, should we wish to consider ‘higher-order’ forcing (such as represented by δ′(x), for
example) then differentiation (with respect to x) of the results obtained so far will yield the
correct results.

Finally, we return to the work of Barbone [13] and Babich et al [12], noting that the elegant
matching procedure developed in the former was also able to predict the launching coefficient
of the subsonic surface wave that the boundary forcing excited. He was, therefore, able to
solve the problem completely without ever using an integral transform (apart from optional
validation purposes). The same general comment applies to the work presented in [12]. The
analysis that we have presented here cannot predict directly the amplitudes of similar waves
arise here (such as Rayleigh, Stoneley or head/lateral waves) and the observation that we
make is that all of the information about their amplitude coefficients is embedded within the
relevant directivity function. This can be seen by recalling that the directivity function is the
amplitude profile of a cylindrically spreading wavefield comprising an expansion fan of rays
centred on the forcing. If there are other wavefields present, then the ray solution becomes
singular along those polar angles for which there is a tangency between the two families of
rays (and this will be a complex angle for subsonic surface waves). A local analysis (such
as that performed by Barbone) will simultaneously remove this nonuniformity and provide
the as yet unknown surface wave launching coefficient. Thus, once we have determined the
directivities (in the absence of any integral transforms), we can use them to determine all other
wavefields in the problem, arguably in a fashion that is more intuitive and straightforward than
analysing a saddle-point coalescing with a simple pole (for surface waves) or a branch point
(for head waves) in a transform analysis. Work into this aspect of these problems is currently
in progress.
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